.RU

4. МЕХАНИЧЕСКАЯ ОБРАБОТКА И МЕТАЛЛИЗАЦИЯ КЕРА-МИЧЕСКИХ ИЗДЕЛИЙ - «Электроизоляционная керамика»



^ 4. МЕХАНИЧЕСКАЯ ОБРАБОТКА И МЕТАЛЛИЗАЦИЯ КЕРА-МИЧЕСКИХ ИЗДЕЛИЙ

Механическая обработка. В современной технике находят широкое применение керами­ческие изделия, соответствующие жестким тре­бованиям по точности размеров, форме и чи­стоте обработки поверхности. Обеспечить вы­полнение таких требований способами обычной керамической технологии не представляется возможным. Изготовленные изделия всегда имеют незначительные отклонения размеров от заданных, обусловленные некоторой неста­бильностью усадки в процессе сушки и обжи­га. Значения усадки зависят как от состава материалов, так и от некоторых технологиче­ских операций./7/

Для получения керамических изделий, имеющих точные размеры и высокую чистоту поверхности, используют механическую обработку обожженных изделий путем шлифова­ния. Для шлифования в основном используют шлифовальные круги и реже порошки из аб­разивных материалов: алмаза, нитрида бора, карбида кремния, электрокорунда и др. (см. приложения, табл. 12).

Механическая обработка керамических изделий всеми видами шлифования осущест­вляется абразивными инструментами из кар­бида кремния и алмаза различной зернистости. Для шлифовки применяют шлифовальные кру­ги, головки, бруски и сегменты соответст­венно шлифуемой поверхности.

Максимальная рабочая скорость абра­зивного инструмента обусловливается типом связующего материала. Так, для алмазного шлифовального круга на керамическом связую­щем рабочая окружная скорость составляет 25 м/с, а на фенолформальдегидном — до 35 м/с.

Для обработки керамических изоляторов, обладающих высокой твердостью и хруп­костью, наиболее эффективным является ал­мазный инструмент на металлическом и фе­нолформальдегидном связующем. Алмазный абразивный инструмент на металлическом свя­зующем используется в основном для черно­вого шлифования керамики, а на фенолфор­мальдегидном связующем — для окончатель­ного, чистого шлифования.

Алмазные круги на металлическом связу­ющем имеют более длительный срок службы. Для черновой обработки керамических изде­лий используют крупнозернистые абразивные круги, а для окончательной чистовой обработ­ки поверхности применяют тонкозеристые аб­разивные инструменты.

Для шлифования керамических изделий используют обычные металлообрабатывающие станки: токарно-винторезные со шлифовальной головкой, токарно-карусельные, шлифовально-карусельные, универсально-шлифовальные и др. Крепление керамических изделий на станке производится при помощи специальной технологической оснастки, обеспечивающей прочное и безопасное положение детали в работе.

Режимы шлифования керамических изделий зависят от свойств керамического материала, от показателей используемого абразивного инструмента и устанавливаются экспериментально. При черновой обработке изделий в большинстве случаев толщина слоя, снимаемого шлифовкой за один проход, составляет примерно 0,25 мм, а при чистовой — 0,005— 0,025 мм.

Для охлаждения в процессе шлифования применяют 2—5 %-ный водный раствор кальцинированной соды, который подают со ско­ростью 20 л/мин.

При круглом шлифовании наружной по­верхности изоляторов цилиндрической формы обрабатываемый изолятор и шлифовальный круг вращаются в одну сторону, а при обра­ботке круглых внутренних поверхностей кера­мических изделий шлифовальный круг и обра­батываемая деталь вращаются в противопо­ложные стороны. Шлифование торцевых по­верхностей цилиндрических изделий может производиться на плоскошлифовальном станке с использованием соответствующей оснаст-ки./10/

^ Металлизация керамики. Металлические покрытия на поверхности керамики могут слу­жить электродами конденсаторов, испытуемых образцов, витков катушки индуктивности или промежуточным слоем для соединения кера­мики с металлической арматурой посредством пайки.

Металлические покрытия керамики можно осуществлять методами вжигания металлосодержащей краски (пасты), испарения и кон­денсацией металла (серебра, золота, никеля, палладия и др.) в вакууме, химического осаж­дения, шоопирования и др.

Металлические покрытия должны обла­дать хорошей электропро-водностью (особенно для высокого напряжения высокой частоты) при малой толщине электродного слоя. Для таких покрытий чаще всего применяют благо­родные металлы (в основном серебро и пал­ладий), устойчивые к окислению. Покрытия, предназначенные для последующей пайки с металлической арматурой, производятся из тугоплавких металлов в сочетании с различ­ными добавками.

Вжигание паст — наиболее распростра­ненный способ металлизации. Основным ком­понентом металлосодержащей пасты является окись серебра, азотнокислое серебро или тон­кодисперсный порошок металлического сереб­ра. Для спекаемости покрытия и хорошей адгезии по отношению к поверхности керамики в пасту вводятся 5—7 % (по массе) плавней в виде борнокислого свинца, оксида висмута или других соединений висмута. Компоненты пасты смешиваются с органическими связую­щими, представленными раствором канифоли в скипидаре или смесью скипидара с касторо­вым маслом до получения однородной массы. Паста, изготовляемая промышленностью на специализированных заводах, содержит 55— 70 % (по массе) металлического серебра.

Нанесение серебряной пасты на керамиче­ские изделия производится вручную кисточкой, пульверизатором, окунанием, а в массовом производстве — шелкографией. Нанесенные покрытия сушат при температуре 80—150 °С в термостатах или в проходных сушилках. Об­жиг производится при температуре 750—850 оС в муфельных или проходных печах в воздуш­ной среде. В процессе обжига покрытия в ин­тервале температур 200—400 °С, т. е. при вы­горании органической связки, подъем темпера­туры должен быть замедленным во избежание вспучивания покрытия и образования трещин на металлизированной поверхности. Режим вжигания серебряной пасты устанавливается экспериментально. Он зависит от нагревостойкости керамики, размеров и конфигурации металлизируемого изделия. Длительность про­цесса может составлять 5—35 ч.

Толщина однократно металлизируемого слоя серебра составляет 3—10 мкм. В случае необходимости для получения покрытия с бо­лее толстым слоем деталь металлизируют 2 — 3 раза, проводя последовательно вжигание каждого нанесенного металлизированного слоя. Толщина металлизирующего слоя на из­делиях среднего размера составляет 40 — 50 мкм.

Металлизация составами на основе туго­плавких металлов применяется для различных вакуум-плотных керамических изделий из фар­фора, стеатита, форстерита и корундовой ке­рамики. В металлизирующий состав входят различные добавки: марганец, железо, крем­ний, оксиды металлов — А12О3, ТiО2, Сr2О3, карбиды, бориды и специальные плавни.

Металлизация различных типов керамиче­ских материалов производится по схеме: очист­ка изолятора от загрязнений, обезжиривание, приготовление и нанесение металлизирующего состава, вжигание покрытия, зачистка, нанесе­ние второго металлизирующего состава, вжи­гание второго покрытия и контроль качества покрытия.

Для приготовления металлизирующих паст используют материалы, получаемые с завода-изготовителя в виде тонкомолотых порошков с удельной поверхностью 4000—5000 см2/г для молибдена и 5000—7000 см2/г для марганца.

Компоненты металлизирующей пасты, взя­тые в заданном соотношении, смешиваются с раствором коллоксилина в изоамилацетате или водно-спиртовый раствор полиамидной смолы. Смешивание компонентов производится в валковой мельнице со стальным барабаном до получения однородной пасты.

Процесс вжигания металлизирующих по­крытий производится в печах с защитной га­зовой средой при температуре 1200—1350 °С с выдержкой при конечной температуре 20—30 мин. Режим вжигания устанавливается опытным путем.

Вжигание покрытия проводится в печах периодического действия или толкательных пе­чах непрерывного действия в увлажненной или азотно-водородной среде при отношении азота к водороду 2:1 или 3:1. Керамические материалы, содержащие в своем составе до­статочное количество стеклофазы (фарфор, стеатит и др.), можно металлизировать па­стами на основе тугоплавких металлов без специальных добавок, а керамические матери­алы, содержащие менее 5 % стеклофазы, не­обходимо металлизировать пастами, в состав которых входят компоненты, образующие жид­кую фазу в процессе вжигания покрытия.

В табл. 13 (см. приложения) приведены составы для ме­таллизации вакуумплотных керамических ма­териалов.

Для увеличения толщины покрытия и об­легчения пайки на молибденовое покрытие методом вжигания или гальваническим путем наносится слой никеля (второе покрытие)./2/


ПРИЛОЖЕНИЯ:

Сырьё

Дробилка

Барабанная мельница

Магнитный сепаратор

Вибрационное сито

Смеситель

Мембранный насос

Пресс-фильтр

Сушка

Бегунковая мельница

Смеситель

Дезинтегратор

Вибросито

Влажное прессование

Сушка

Предварительное прессование

Бегунковая дробилка

Сито

Воздушный классификатор

Сухое прессование

Вакуум-пресс

Бункер

Смеситель

Литьё

Обтачка

Мудштучное прессование

Сушка

Спекание

Механическая обработка

Глазурование

Обжиг

Шлифование

Глазурование (легко-плавкими глазурями)

Контроль

Очистка от песка

Рис. 1. Технологическая схема производства электрокерамических

изделий



^ Таблица 1. Фазовый состав и основные свойства электрофарфора

Показатель

Фарфор

твёрдый

с повышенным содержанием муллита

кристобалитовый

корундовый

Состав, %

Муллит

25-28

35-48

23-25

10-12

Кремнезем

10-12

1-5

23-25

-

Кристобалит

-

-

20-25

-

Корунд

-

0-5

-

35-40

Стеклофаза

60-62

55-60

28-33

45-50

Основные свойства

Прочность при изгибе, МПа

70

120

110

170-220

Ударная вязкость, кДж/м2

1,5

2,0

2,2

2,5

Электрическая прочность, МВ/м

30

35

35

35


^ Таблица 2. Основные классы электротехнических материалов соот-ветственно применению

Класс

Применение

Вид керамики

Характерные особенности

1

Изоляторы для ус-тройств высокого и низкого напряжения, низкой частоты

Электрофарфор и глиноземистый фарфор

Хорошие электромеханические свойства, возмож-ность изготовления изоляторов любых размеров

2

Низкочастотные и вы-сокочастотные изоля-торы и конденсаторы малой ёмкости

Стетит, ультрафарфор, корундо-муллитовая керамика, цельзиановая керамика

Небольшое значение εr

3

Конденсаторы высо-кого и низкого напря-жения, высокой и низ-кой частоты

Рутиловая, перовскитовая, титано-циркониевая керамика, стронций-висмутовый титанат, алюминат-лантановая керамика

Высокое и очень вы-сокое значение εr, за-данное или не регла-ментированное зна-чение ТКε

4

Термодугостойкие узлы: искрогаситель-ные камеры, основа-ния нагревательных элементов и проволоч-ных резисторов, изоля-торы в вакуумных приборах

Кордиерит, литий-содержащая, высокоглиноземистая и цирконовая кера-мика

Высокая механи-ческая стойкость при нагреве и стойкость к термоударам

5

Высоконагревостойкие изоляторы

Керамика на основе чистых оксидов алю-миния, магния, бе-риллия и т. д.

Высокие электри-ческие свойства при высокой температу-ре, высокая тепло-проводность

6

Резисторы

Смесь керамики с са-жей или графитом; керамика на основе смешанных кристал-лов оксида цинка и оксидов металлов с переменной валент-ностью

Повышенная и высо-кая электропровод-ность, линейная и нелинейная вольт-амперные харак-теристики


^ Таблица 3. Огнеупорные глины

Место-рож-дение

Содержание оксидов, %

Потери при прокали-вании, %

SiO2

Al2O3

Fe2O3

CaO

MgO

K2O

Na2O

Часовъяр-ское

49,6-60,74

27,17-36,15

0,77-1,97

0,24-1,12

0,64-1,32

1,42-2,99

0,19-0,54

9,86-7,35

Дружков-ское

47,0-57,0

32,4-37,0

0,81-1,32

0,72-1,38

0,16-0,50

1,18-3,48

11,46-9,50

Торжков-ское

45,5-55,1

28,9-37,3

0,43-2,73

0,46-2,30

0,14-1,81

0,04-1,59

0,24-0,96

17,70-11,06


^ Таблица 4. Каолины

Место-рож-дение


Вид коалина

Содержание оксидов, %

Поте-

ри при про-кали-вании, %

SiO2

Al2O3

Fe2O3

CaO

MgO

K2O

Na2O

Прося-новское

Нео-бога-щён-ный

65,0-69,7

21,7-26,4

0,84-1,0

0,4-0,7

0,08-0,3

0,27-0,83

-

7,9-4,9

Обо-гащён-ный

45,5-47,4

37,4-39,8

0,3-0,94

0,15-1,3

0,12-0,56

0,15-0,77

0-0,68

14,0-13,2

Глухо-вецкое

Нео-бога-щён-ный

65,3-69,6

22,2-26,2

0,2-0,5

0,32-0,45

-

0,13-0,15

-

8,7-7,9

Обо-гащён-ный

46,0-47,9

37,1-40,4

0,21-0,95

0,13-0,5

0-0,53

0-0,4

0-0,003

13,7-13,1

Кыштым-ское

Нео-бога-щён-ный

69,0

21,1

0,95

0,65

0,32

-

-

6,99

Обо-гащён-ный

45,7-49,2

36,3-38,2

0,5-2,2

0,46-1,6

0,28-0,76

0,39-0,80

0-0,59

13,7-12,1

Балай-ское

Обо-гащён-ный

45,5-51,1

34,2-37,2

0,6-0,8

0,3-0,88

0,1-0,2

-

0,7-0,96

-

Ангрен-ское

Нео-бога-щён-ный

54,6-57,1

30,2-32,3

0,1-0,8

0,7-1,2

0,28-0,3

-

0,28

-


^ Таблица 5. Кварцевые материалы

Сырьё

Содержание оксидов, %

Потери при прока-лива-нии, %

SiO2

Al2O3

Fe2O3

CaO

MgO

K2O

Na2O

^ Кварцевый песок

Любе-рецкий

99,5-98,6

0,06-0,8

0,1-0,2

0,1-0,2

0,04-0,1

0,1

-

0,08-0,02

Авдеев-ский

96,6-98,8

2,7-0,7

0,1-0,2

0,2-0,6

0,1-0,2

-

-

0,1-0,3

Талшин-ский

99,3-99,7

0,3-0,2

0,04

0,06

0,03

-

0,04-0,1

0,1-0,4

ГДР

99,7-99,8

0,1

0,01

0,02

0,03

-

-

0,13-0,15

^ Кварц жильный

Нарын-Кунтин-ский

90,7-99,4

0,4-0,6

0,0-0,6

0,0-0,8

0,0-0,9

2,7-0,0

0,0-0,2

0,26


^ Таблица 6. Полевой шпат и пегматит

Сырьё

Содержание оксидов, %

Поте-ри при прока-лива-нии, %

SiO2

Al2O3

Fe2O3

CaO

MgO

K2O

Na2O

Пегматит

Глубо-чан-ский (Тока-ров-ский)

71,3-75,4

14,8-16,2

0,4-0,6

0,6-1,2

0,1-0,4

4,6-5,3

3,6-4,5

1,0-1,5

Прила-дож-ский

65,6-77,7

13,1-19,3

0,1-1,0

0,6-2,3

0-0,7

4,1-5,9

3,6-5,1

0,8-1,6

Елисе-евский

70,7-75,6

13,3-17,1

0,3-0,8

0,5-1,3

0-0,2

3,0-4,9

2,9-5,3

0,6-1,5

Алапаев-ский

65,5-74,4

13,9-19,7

0,2-0,4

0,2

0,1

7,9-12,0

1,9-3,5

-

^ Полевой шпат

Норвеж-ский

65-74,7

19,2-20,2

0,1-0,3

-

0,2

11,1-12,8

3,3-3,7

3,4-3,5

Применя-емый в США

65-68,6

17,3-19,9

0,1-0,3

0-0,5

0,03

10,5-12,0

2,7-3,3

3,6-3,9

Применя-емый в Швеции

64,0

19,4-

0,1

0,08

-

14,0

1,9

7,3

Применя-емый в ФРГ

68,5

17,6

0,3

0,2

0,1

10,6

0,7

15,8


^ Таблица 7. Циркониевое сырьё

Сырьё, место-рожде-ние

Содержание оксидов, %

Потери при про-калива-нии, %

SiO2

K2O

TiO2

ZrO2

Al2O3

Fe2O3

CaO

MgO

Бадделе-ит, Бразилия

0,69-0,19

-

-

96,84-98,9

0,13

0,37-0,82

0,21-0,06

-

0,98-0,28

Циркон-фавас светло-коричне-вый, Бразилия

15,35

-

0,51

81,64

0,9

1,00

-

-

0,63

Циркон-фавас аспидно-серый, Бразилия

2,05

-

0,56

92,87

0,7

3,50

-

-

0,52

Циркон-фавас чистый, Бразилия

0,48

-

0,48

97,19

0,4

0,92

Сле-ды

-

0,38

Циркон, Шри Ланка

33,86

-

-

64,25

-

1,08

-

-

-

Циркон, Швеция

32,44

-

-

65,76

-

0,42

0,09

-

0,46

Циркон, Австра-лия

30,00

-

2,08

65,42

1,2

0,44

0,14

0,22

-

Циркон, Россия (Ильмен-ские горы)

34,79

-

0,91

57,95

2,88

1,94

1,85

-

0,15

Циркон, Россия (Вишнё-вые горы)

32,63

0,48

1,22

63,53

0,37

0,88

0,61

0,07

0,35

Циркон, Россия (Жданов)

34,09

1,08

Нет

59,93

1,4

1,44

0,12

-

-


4-osnovnie-pokazateli-i-faktori-povliyavshie-na-hozyajstvennuyu-deyatelnost.html
4-osnovnie-problemi-i-perspektivi-socialno-ekonomicheskogo-razvitiya-strategiya-socialno-ekonomicheskogo-razvitiya.html
4-osnovnie-svetotehnicheskie-velichini-vidi-i-sistemi-osvesheniya-trebovaniya-k-proizvodstvennomu-osvesheniyu.html
4-osnovnie-vivodi-master-i-margarita.html
4-osobennosti-ekonomicheskih-iziskanij-dlya-obosnovaniya-stroitelstva-kolcevih-i-obhodnih-dorog-mostovih-perehodov-i-transportnih-peresechenij.html
4-osobennosti-plemennoj-raboti-v-ovcevodstve-lekciya-1-vvodnaya-puti-uvelicheniya-produktivnosti-sh-zhivotnih.html
  • spur.bystrickaya.ru/metod-simmetrichnih-sostavlyayushih-lekciya-1.html
  • notebook.bystrickaya.ru/habarovskij-kraj-monitoring-sredstv-massovoj-informacii-13-dekabrya-2010-goda.html
  • pisat.bystrickaya.ru/tema-metodiki-polucheniya-anatomicheskih-ottiskov-dlya-izgotovleniya-individualnih-lozhek-i-materiali-primenyaemie-dlya-etih-celej-cel-zanyatiya.html
  • portfolio.bystrickaya.ru/osnovnaya-obrazovatelnaya-programma-po-napravleniyu-030300-psihologiya-magisterskaya-programma-psihologiya-spor.html
  • shpargalka.bystrickaya.ru/usloviya-organizacii-i-provedeniya-zaklyuchitelnogo-etapa-vserossijskoj-olimpiadi-obuchayushihsya-v-obrazovatelnih-uchrezhdeniyah-srednego-professionalnogo-obrazovaniya-po-specialnosti.html
  • credit.bystrickaya.ru/po-prodazhe-zemelnih-uchastkov-pod-torgovuyu-zonu-v-pos-sosnovo-administraciya-municipalnogo-obrazovaniya-priozerskij-municipalnij-rajon-leningradskoj-oblasti.html
  • literature.bystrickaya.ru/cerkovno-prosvetitelskaya-deyatelnost-knyazya-k-k-ostrozhskogo-okonchanie-cerkovno-prosvetitelskaya-deyatelnost-knyazya-k-k-ostrozhskogo.html
  • grade.bystrickaya.ru/nachalnij-ochag-hlebopashestva-a-d-kolesnikov-a-d-kolesnikov.html
  • institut.bystrickaya.ru/tehnicheskaya-specifikaciya-predsedatelya-pravleniya-ao-agrarnaya-kreditnaya-korporaciya-49.html
  • learn.bystrickaya.ru/glava-9-tajna-avtor-etoj-knigi-viros-v-moskve-pereproboval-ryad-professij-no-po-nastoyashemu-nashel-sebya-v-hudozhestvennom.html
  • testyi.bystrickaya.ru/alina-kabaeva-ege-sdavajsya-v-spbgu-v-aprele-2010-g-proshli-meropriyatiya-provedennie-laboratoriej-sprint-i-korporaciej-intel.html
  • writing.bystrickaya.ru/geologicheskoe-stroenie-dna-mirovogo-okeana.html
  • writing.bystrickaya.ru/den-vtoroj-mark-levi.html
  • thesis.bystrickaya.ru/povishennie-poteri-bikarbonata-cherez-zhkt-kislotno-shelochnoj-balans-v-intensivnoj-terapii-kostyuchenko.html
  • occupation.bystrickaya.ru/modulnaya-programma-povisheniya-kvalifikacii-direktorov-shkol.html
  • obrazovanie.bystrickaya.ru/prikaz-ministerstva-selskogo-hozyajstva-i-prodovolstviya-respubliki-belarus-31-maya-1996-g-142-stranica-3.html
  • ekzamen.bystrickaya.ru/semin-i-bozhovich-doigrayutsya-do-otstavki-v-bashkirii-poyavitsya-eshe-odin-fizkulturnij-kompleks-9-budem-stroit-dvorci.html
  • holiday.bystrickaya.ru/obsherossijskij-profsoyuz-obrazovaniya-glavnij-tehnicheskij-inspektor-truda-profsoyuza-centralnij-sovet-profsoyuza.html
  • letter.bystrickaya.ru/metodicheskie-ukazaniya-k-vipolneniyu-vipusknoj-kvalifikacionnoj-raboti-kvalifikaciya-buhgalter.html
  • znanie.bystrickaya.ru/aventyura-iii-o-tom-kak-zigfrid-priehal-v-vorms-v-g-admoni-pesn-o-nibelungah.html
  • student.bystrickaya.ru/1-zhalpi-erezheler-azastan-respublikasi-aumainda-zhilzhimajtin-mlk-obektlern-mekenzhajin-anitau-zhnnde-anitama-beru.html
  • prepodavatel.bystrickaya.ru/tema-grckata-vorzhena-propaganda-v-makedoniya-1903-1908.html
  • desk.bystrickaya.ru/plan-meropriyatij-po-nadzoru-na-obektah-nadzora-na-2009-g-p-p-stranica-6.html
  • write.bystrickaya.ru/glava-17-eksodusa.html
  • lesson.bystrickaya.ru/trebovaniya-k-oformleniyu-kadrovih-dokumentov-chast-2.html
  • klass.bystrickaya.ru/5finansovo-ekonomicheskaya-deyatelnost-publichnij-doklad.html
  • institut.bystrickaya.ru/stupeni-visshego-professionalnogo-obrazovaniya-informacionno-metodicheskij-sbornik-dlya-starsheklassnikov-klassnih.html
  • crib.bystrickaya.ru/izuchite-sleduyushee-kazahstan-universitet-sirdariya.html
  • lecture.bystrickaya.ru/72testovie-zadaniya-uchebno-metodicheskij-kompleks-specialnost-032401-reklama-moskva-2009.html
  • education.bystrickaya.ru/2-harakteristika-i-klassifikaciya-analiticheskih-metodov-optimizacii.html
  • pisat.bystrickaya.ru/tablica-2-grafik-organizacii-samostoyatelnoj-raboti-poyasnitelnaya-zapiska-1-mesto-kursa-v-professionalnoj-podgotovke.html
  • uchitel.bystrickaya.ru/rabochaya-uchebnaya-programma-disciplina-zarubezhnaya-literatura-i-literatura-strani-izuchaemogo-yazika.html
  • university.bystrickaya.ru/federalnie-organi-gosudarstvennoj-ohrani-rf-struktura-i-polnomochiya-pravoohranitelnie-organi.html
  • ucheba.bystrickaya.ru/prakticheskoe-ispolzovanie-nauchnogo-znaniya-filosofiya-nauki.html
  • zadachi.bystrickaya.ru/na-proficit-ne-pokushatsya-radio-7-mayak-novosti-21-08-2008-lobanov-oleg-06-00-07-00-7.html
  • © bystrickaya.ru
    Мобильный рефератник - для мобильных людей.