.RU

4. Множественная регрессия






ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ

ИНСТИТУТ


Кафедра экономико-метематических моделей


ЭКОНОМЕТРИКА


Конспект лекции 2


ОРЛОВА И.В.


2007


Тема 4. Множественная регрессия. Вопросы
1. Модель множественной регрессии. Оценка параметров множественной регрессии методом наименьших квадратов (МНК).

2. Предпосылки применения метода наименьших квадратов (МНК).

3. Свойства оценок метода наименьших квадратов (МНК).

4. Проверка качества многофакторных регрессионных моделей

5. Оценка существенности параметров линейной регрессии.

6. Мультиколлинеарность. Последствия мультиколлинеарности. Способы обнаружения мультиколлинеарности. Способы избавления от мультиколлинеарности.

7. Отбор факторов при построении множественной регрессии. Процедура пошагового отбора переменных.

8. Оценка влияния факторов на зависимую переменную (коэффициенты эластичности, бета коэффициенты).

9.Анализ экономических объектов и прогнозирование с помощью модели множественной регрессии.


Материал к этой лекции изложен в учебном пособии [1] на стр. 207 – 241.


Функция , описывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии1. Уравнение регрессии показывает ожидаемое значение зависимой переменной при определенных значениях зависимых переменных .

В зависимости от количества включенных в модель факторов Х модели делятся на однофакторные (парная модель регрессии) и многофакторные (модель множественной регрессии).

В зависимости от вида функции модели делятся на линейные и нелинейные.

Модель множественной линейной регрессии имеет вид:

y i = 0 + 1x i 1 +2x i 2 +…+ k x i k + i (2.1)

- количество наблюдений.

коэффициент регрессии j показывает, на какую величину в среднем изменится результативный признак , если переменную xj увеличить на единицу измерения, т. е. j является нормативным коэффициентом.

Коэффициент может быть отрицательным. Это означает, что область существования показателя не включает нулевых значений параметров. Если же а0>0, то область существования показателя включает нулевые значения параметров, а сам коэффициент характеризует среднее значение показателя при отсутствии воздействий параметров.

Анализ уравнения (2.1) и методика определения параметров становятся более наглядными, а расчетные процедуры существенно упрощаются, если воспользоваться матричной формой записи:

(2.2) .

Где – вектор зависимой переменной размерности п  1, представляющий собой п наблюдений значений .

- матрица п наблюдений независимых переменных , размерность матрицы равна п  (k+1) . Дополнительный фактор , состоящий из единиц, вводится для вычисления свободного члена. В качестве исходных данных могут быть временные ряды или пространственная выборка.

- количество факторов, включенных в модель.

a — подлежащий оцениванию вектор неизвестных параметров размерности (k+1)  1;

— вектор случайных отклонений (возмущений) размерности п  1. отражает тот факт, что изменение будет неточно описываться изменением объясняющих переменных , так как существуют и другие факторы, неучтенные в данной модели.

Таким образом,
Y = , X = , , a = .

Уравнение (2.2) содержит значения неизвестных пара­метров 0,1,2,… ,k . Эти величины оцениваются на основе выборочных наблюдений, поэтому полученные расчетные показатели не являются истинными, а представляют собой лишь их статистические оценки. Модель линейной регрес­сии, в которой вместо истинных значений параметров под­ставлены их оценки (а именно такие регрессии и приме­няются на практике), имеет вид

, (2.3)

где A — вектор оценок параметров; е — вектор «оценен­ных» отклонений регрессии, остатки регрессии е = Y - ХА; —оценка значе­ний Y, равная ХА.

Построение уравнения регрессии осуществляется, как правило, методом наименьших квадратов (МНК), суть которого состоит в минимизации суммы квадратов отклонений фактических значений результатного признака от его расчетных значений, т.е.:

.

Формулу для вычисления параметров регрессионного уравнения по методу наименьших квадратов приведем без вывода


(2.4).

Для того что­бы регрессионный анализ, основанный на обычном методе наименьших квад­ратов, давал наилучшие из всех возможных результаты, дол­жны выполняться следующие условия, известные как условия Гаусса – Маркова.

Первое условие. Математическое ожидание случайной составляющей в любом наблюдении должно быть равно нулю. Иногда случайная составляющая будет положительной, иногда отрицательной, но она не должна иметь систематичес­кого смещения ни в одном из двух возможных направлений.



Фактически если уравнение регрессии включает постоянный член, то обыч­но это условие выполняется автоматичес­ки, так как роль константы состоит в определении любой систематической тенденции , которую не учитывают объясняющие переменные, включен­ные в уравнение регрессии.

Второе условие означает, что дисперсия случайной составляющей должна быть постоянна для всех наблюдений. Иногда случайная составляющая будет больше, иногда меньше, однако не должно быть априорной причины для того, чтобы она по­рождала большую ошибку в одних наблюдениях, чем в других.

Эта постоянная дисперсия обычно обозначается , или часто в более крат­кой форме , а условие записывается следующим образом:

.

Выполнимость данного условия называется гомоскедастичностью (постоянством дисперсии отклонений). Невыполнимость данной предпосылки называется гетероскедастичностью, (непостоянством дисперсии отклонений).

Третье условие предполагает отсутствие систематической связи между значени­ями случайной составляющей в любых двух наблюдениях. Например, если случайная составляющая велика и положительна в одном наблюдении, это не должно обусловливать систематическую тенденцию к тому, что она будет большой и положительной в следующем наблюдении. Случайные составляющие должны быть независимы друг от друга.

В силу того, что , данное условие можно записать следую­щим образом:



Возмущения не коррелированны (условие независимости случайных составляющих в различных наблюдениях).

Это условие означает, что отклонения регрессии (а значит, и сама зависимая переменная) не коррелируют. Условие некоррелируемости огра­ничительно, например, в случае временного ряда . Тог­да третье условие означает отсутствие автокорреляции ряда .

Четвертое условие состоит в том, что в модели (2.1) возмущение (или зависимая переменная ) есть величина случайная, а объясняющая переменная - вели­чина неслучайная.

Если это условие выполнено, то теоретическая ковариация между независи­мой переменной и случайным членом равна нулю.

Наряду с условиями Гаусса— Маркова обычно также предполагается нормаль­ность распределения случайного члена.

В тех случаях, когда выполняются предпосылки, оценки, полученные по МНК, будут обладать свойствами несмещенности, состоятель­ности и эффективности.

^ Качество модели регрессии связывают с адекватностью модели наблюдаемым (эмпирическим) данным. Проверка адекватности (или соответствия) модели регрессии наблю­даемым данным проводится на основе анализа остатков - .

Анализ остатков позволяет получить представление, насколько хорошо подобрана сама модель и насколько правильно выбран метод оценки коэффициентов. Согласно общим предположениям регрессионного анализа, остатки должны вести себя как независимые (в действительности, почти независимые) одинаково распределенные случайные величины.

Качество модели регрессии оценивается по следующим направлениям:

  1. проверка качества всего уравнения регрессии;

  2. проверка значимости всего уравнения регрессии;

  3. проверка статистической значимости коэффициентов уравнения регрессии;

  4. проверка выполнения предпосылок МНК.


При анализе качества модели регрессии, в первую очередь, используется коэффициент детерминации, который определяется следующим образом:


, (2.5)

где - среднее значение зависимой переменной,

- предсказанное (расчетное) значение зависимой переменной.

^ Коэффициент детерминации показывает долю вариации результативного признака, находя­щегося под воздействием изучаемых факторов, т. е. определяет, ка­кая доля вариации признака Y учтена в модели и обусловлена влия­нием на него факторов.

Чем ближе к 1, тем выше качество модели.

Для оценки качества регрессионных моделей целесообразно также ис­пользовать коэффициент множественной корреляции (индекс корреляции) R

R = = (2.6)

Данный коэффициент является универсальным, так как он отра­жает тесноту связи и точность модели, а также может использовать­ся при любой форме связи переменных.

Важным моментом является проверка значимости построенного уравнения в целом и отдельных параметров.

Оценить значимость уравнения регрессии – это означает установить, соответствует ли математическая модель, выражающая зависимость между Y и Х, фактическим данным и достаточно ли включенных в уравнение объясняющих переменных Х для описания зависимой переменной Y

Оценка значимости уравнения регрессии производится для того, чтобы узнать, пригодно уравнение регрессии для практического использования (например, для прогноза) или нет.

Для проверки значимости модели регрессии используется F-критерий Фишера. Если расчетное значение с 1= k и 2 = (n - k - 1) степенями свободы, где k – количество факторов, включенных в модель, больше табличного при заданном уровне значимости, то модель считается значимой.

(2.7)

В качестве меры точности применяют несмещенную оценку дис­персии остаточной компоненты, которая представляет собой отно­шение суммы квадратов уровней остаточной компоненты к величи­не (n- k -1), где k – количество факторов, включенных в модель. Квадратный корень из этой величины () называется стандартной ошибкой:


(2.8)


значимость отдельных коэффициентов регрессии проверяется по t-статистике пу­тем проверки гипотезы о равенстве нулю j-го параметра уравнения (кроме свободного члена):

, (2.9)

где Saj — это стандартное (среднеквадратическое) отклонение коэффициента уравнения регрессии aj. Величина Saj представляет собой квадратный корень из произ­ведения несмещенной оценки дисперсии и j -го диагонального эле­мента матрицы, обратной матрице системы нормальных уравнений.



где - диагональный элемент матрицы .

Если расчетное значение t-критерия с (n - k - 1) степенями сво­боды превосходит его табличное значение при заданном уровне зна­чимости, коэффициент регрессии считается значимым. В противном случае фактор, соответствующий этому коэффициенту, следует ис­ключить из модели (при этом ее качество не ухудшится).

^ Проверка выполнения предпосылок МНК.

Рассмотрим выполнение предпосылки гомоскедастичности, или равноизменчивости случайной составляющей (возмущения).

Невыполнение этой предпосылки, т.е. нарушение условия гомоскедастичности возмущений означает, что дисперсия возмущения зависит от значений факторов. Такие регрессионные модели называются моделями с гетероскедастичностью возмущений.

^ Обнаружение гетероскедастичности

Для обнаружения гетероскедастич­ности обычно используют тесты, в которых делаются различные предположения о зависимости между дисперсией случайного члена и объясняющей переменной: тест ранговой корреляции Спирмена, тест Голдфельда - Квандта, тест Глейзера, двусторонний критерий Фишера и другие [2].


При малом объеме выборки для оценки гетероскедастич­ности может использоваться метод Голдфельда — Квандта.

Данный тест используется для проверки такого типа гетероскедастичности, когда дисперсия остатков воз­растает пропорционально квадрату фактора. При этом делается предположение, что, случайная составляющая распределена нормально.

Чтобы оценить на­рушение гомоскедастичности по тесту Голдфельда - Квандта необходимо выполнить следующие шаги.

  1. Упорядочение п наблюдений по мере возрастания перемен­ной х.

  2. Исключение средних наблюдений ( должно быть примерно равно четверти общего количества наблюдений).

  3. Разделение совокупности на две группы (соответственно с малыми и большими значениями фактора ) и определение по каждой из групп уравнений регрессии.

  4. Определение остаточной суммы квадратов для первой регрессии и второй регрессии .

  5. Вычисление отношений (или ). В числителе должна быть большая сумма квадратов.


Полученное от­ношение имеет F распределение со степенями свободы k1=n1-k и k2=n-n1-k, (k– число оцениваемых параметров в уравнении регрессии).

Если , то гетероскедастичность имеет место.

Чем больше величина F превышает табличное значение F -критерия, тем более нарушена предпосылка о равенстве дисперсий остаточ­ных величин.

^ Оценка влияния отдельных факторов на зависимую переменную на основе модели (коэффициенты эластичности,  - коэффициенты).

Важную роль при оценке влияния факторов играют коэффициен­ты регрессионной модели. Однако непосредственно с их помощью нельзя сопоставить факторы по степени их влияния на зависимую переменную из-за различия единиц измерения и разной степени ко­леблемости. Для устранения таких различий при интерпретации применяются средние частные коэффициенты эластичности Э(j) и бета-коэффициенты (j).

Эластичность Y по отношению к Х(j) определяется как процентное изменение Y, отнесенное к соответствующему процентному изменению Х. В общем случае эластичности не постоянны, они различаются, если измерены для различных точек на линии регрессии. По умолчанию стандартные программы, оценивающие эластичность, вычисляют ее в точках средних значений:




Эластичность ненормирована и может изменяться от - до + . Важно, что она безразмерна, так что интерпретация эластичности =2.0 означает, что если изменится на 1%, то это приведет к изменению на 2%. Если =-0.5, то это означает, что увеличение на 1% приведет к уменьшению на 0.5%.

Высокий уровень эластичности означает сильное влияние независимой переменной на объясняемую переменную.





где Sxj — среднеквадратическое отклонение фактора j

где .

Коэффициент эластичности показывает, на сколько процентов изменяется зависимая переменная при изменении фактора j на один процент. Однако он не учитывает степень колеблемости факторов.

Бета-коэффициент показывает, на какую часть величины средне­го квадратического отклонения Sy изменится зависи­мая переменная Y с изменением соответствующей независимой пере­менной Хj на величину своего среднеквадратического отклонения при фиксирован­ном на постоянном уровне значении остальных независимых пере­менных.

Указанные коэффициенты позволяют упорядочить факторы по степени влияния факторов на зависимую переменную.

Долю влияния фактора в суммарном влиянии всех факторов мож­но оценить по величине дельта - коэффициентов  (j):



где — коэффициент парной корреляции между фактором j (j = 1,...,m) и зависимой переменной.

^ Прогнозирование с помощью модели множественной регрессии.

Уравнение регрессии применяют для расчета значений показателя в заданном диапазоне изменения параметров. Оно ограниченно пригодно для расчета вне этого диапазона, т.е. его можно применять для решения задач интерполяции и в ограниченной степени для экстраполяции.

Прогноз, полученный подстановкой в уравнение регрессии ожидаемого значения параметра, является точечным. Вероятность реализации такого прогноза ничтожна мала. Целесообразно определить доверительный интервал прогноза.

Для того чтобы определить область возможных значений резуль­тативного показателя, при рассчитанных значениях факторов следует учитывать два возможных источника ошибок: рассеивание на­блюдений относительно линии регрессии и ошибки, обусловленные математическим аппаратом построения самой линии регрессии. Ошибки первого рода измеряются с помощью характеристик точ­ности, в частности, величиной . Ошибки второго рода обусловле­ны фиксацией численного значения коэффициентов регрессии, в то время как они в действительности являются случайными, нормально распределенными.

Для линейной модели регрессии доверительный интервал рассчи­тывается следующим образом. Оценивается величина отклонения от линии регрессии (обозначим ее U):.

(2.10). где .

^ Особенности практического применения регрессионных моделей.
Одним из условий регрессионной модели является предположение о линейной независимости объясняющих переменных, т. е., решение задачи возможно лишь тогда, когда столбцы и строки матрицы ис­ходных данных линейно независимы. Для экономических показате­лей это условие выполняется не всегда.

Под мультиколлинеарностью понимается высокая взаимная коррелированность объясняющих переменных, которая приводит к линейной зависимости нормальных уравнений.

Мультиколлинеарность может возникать в силу разных причин. На­пример, несколько независимых переменных могут иметь общий вре­менной тренд, относительно которого они совершают малые колебания.

Существует несколько способов для определения наличия или отсутствия мультиколлинеарности.

Один из подходов заключается в анализе матрицы коэффициентов парной корреляции. Считают явление мультиколлинеарности в исходных данных установленным, если коэффициент парной корреляции между двумя переменными больше 0,8.

Другой подход состоит в исследовании матрицы Х'Х. Если определитель матрицы Х'Х близок к нулю, то это свидетельствует о наличии мультиколлинеарности.

Для устранения или уменьшения мультиколлинеарности ис­пользуется ряд методов.

Наиболее распространенные в таких случаях следующие приемы: исключение одного из двух силь­но связанных факторов, переход от первоначальных факторов к их главным компонентам, число которых быть может мень­ше, затем возвращение к первоначальным факторам.

Самый простой из них (но не всегда самый эффективный) состоит в том, что из двух объясняющих пере­менных, имеющих высокий коэффициент корреляции (больше 0,8), одну переменную исключают из рассмотрения. При этом какую пе­ременную оставить, а какую удалить из анализа, решают в первую очередь на основании экономических соображений. Если с эконо­мической точки зрения ни одной из переменных нельзя отдать предпочтение, то оставляют ту из двух переменных, которая имеет больший коэффициент корреляции с зависимой переменной.

Еще одним из возможных методов устранения или уменьшения мультиколлинеарности является использование стратегии шагового отбора, реализованную в ряде алгоритмов пошаговой регрессии.

Наиболее широкое применение получили следующие схемы построения уравнения множественной регрессии: метод включения факторов и метод исключения – отсев факторов из полного его набора.

В соответствии с первой схемой признак включается в уравнение в том случае, если его включение существенно увеличивает значение множественного коэффициента корреляции, что позволяет последовательно отбирать факторы, оказывающие существенное влияние на результирующий признак даже в условиях мультиколлинеарности системы признаков, отобранных в качестве аргументов из содержательных соображений. При этом первым в уравнение включается фактор, наиболее тесно коррелирующий с Y, вторым в уравнение включается тот фактор, который в паре с первым из отобранных дает максимальное значение множественного коэффициента корреляции, и т.д. Существенно, что на каждом шаге получают новое значение множественного коэффициента (большее, чем на предыдущем шаге); тем самым определяется вклад каждого отобранного фактора в объясненную дисперсию Y.

Вторая схема пошаговой регрессии основана на последовательном исключении факторов с помощью t -критерия. Она заключается в том, что после построения уравнения регрессии и оценки значимости всех коэффициентов регрессии из модели исключают тот фактор, коэффициент при котором незначим и имеет наименьший коэффициент t . После этого получают новое уравнение множественной регрессии и снова производят оценку значимости всех оставшихся коэффициентов регрессии. Если среди них опять окажутся незначимые, то опять исключают фактор с наименьшим значением t -критерия. Процесс исключения факторов останавливается на том шаге, при котором все регрессионные коэффициенты значимы.

Ни одна их этих процедур не гарантирует получения оптимального набора переменных. Однако при практическом применении они позволяют получить достаточно хорошие наборы существенно влияющих факторов.

При отборе факторов также рекомендуется пользоваться следующим правилом: число включаемых факторов обычно в 6–7 раз меньше объема совокупности, по которой строится регрессия. Если это соотношение нарушено, то число степеней свободы остаточной дисперсии очень мало. Это приводит к тому, что параметры уравнения регрессии оказываются статистически незначимыми, а -критерий меньше табличного значения.

Особым случаем мультиколлинеарности при использова­нии временных выборок является наличие в составе перемен­ных линейных или нелинейных трендов. В этом случае рекомендуется сначала выделить и исключить тренды, а затем определить параметры регрессии по остаткам.

Игнорирование наличия трендов в зависимой и независи­мой переменных ведет к завышению степени влияния неза­висимых переменных на результирующий признак, что полу­чило название ложной корреляции.

Большим препятствием к применению регрессии является ограниченность исходной информации, при этом наряду с указанными выше затрудняющими обстоятельства­ми (мультиколлинеарность, зависимость остатков, небольшой объем выборки и т. п.) ценность информации может сни­жаться за счет ее «засоренности», т. е. проявления новых обстоятельств, которые ранее не были учтены.

Резко отклоняющиеся наблюдения могут быть результа­том действия большого числа сравнительно малых случайных факторов, которые в достаточно редких случаях приводят к большим отклонениям, либо это действительно случайные один или несколько выбросов, которые можно исключить как аномальные. Однако при наличии не менее трех аномальных отклонений на несколько десятков наблюдений приписывают это наличию одного или нескольких неучтенных факторов, которые проявляются только для аномальных на­блюдений.

Наиболее распространенные в таких случаях следующие приемы: исключение одного из двух силь­но связанных факторов, переход от первоначальных факторов к их главным компонентам, число которых быть может мень­ше, затем возвращение к первоначальным факторам.

Литература



  1. Орлова И.В., Половников В.А. Экономико-математические методы и модели: компьютерное моделирование: Учеб. пособие – М.: Вузовский учебник, 2007.

  2. Эконометрика: Учебник / Под ред. И.И.Елисеевой. - 2-е изд.; перераб. и доп. - М.: Финансы и статистика, 2005. - 576с.

  3. Практикум по эконометрике: Учебное пособие / Под ред. Елисеевой И.И. - М.: Финансы и статистика, 2001,2002,2003,2004. - 192с

  4. Орлова И.В.   Экономико-математическое моделирование. Практическое пособие по решению задач / И. В. Орлова; ВЗФЭИ. - М.: Вузовский учебник, 2004. - 144с.

  5. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. М.: ЮНИТИ, 1998.

  6. Орлов А.И. Эконометрика: Учеб. пособие для вузов – М.: «Экзамен», 2002.


Компьютерные обучающие программы (Web-сайт ВЗФЭИ)


КОПР3- Компьютерные обучающие программы для студентов 3-го курса:

- Эконометрика (для специальностей 06.05, 06.04)

Электронные материалы (Web-сайт ВЗФЭИ, сервер ВЗФЭИ)

Образцы решения типовых задач.




1 Термин "регрессия" (regression (лат.) – отступление, возврат к чему-либо) ввел английский статистик Ф. Гальтон. Он исследовал влияние роста родителей и более отдаленных предков на рост детей. По его модели рост ребенка определяется наполовину родителями, на четверть – дедом с бабкой, на одну восьмую прадедом и прабабкой и т.д. Другими словами, такая модель характеризует движение назад по генеалогическому дереву. Ф. Гальтон назвал это явление регрессией как противоположное движению вперед – прогрессу. В настоящее время термин "регрессия" применяется в более широком плане – для описания статистической связи между случайными величинами.



4-rezultati-kolichestvennih-issledovanij-metodika-issledovaniya-s-primeneniem-kachestvennoj-metodologii-14-metodika.html
4-rezultativnost-deyatelnosti-obrazovatelnogo-uchrezhdeniya-za-poslednie-3-goda-1-obshie-svedeniya-ob-obsheobrazovatelnom-uchrezhdenii.html
4-ris-1-karta-strategicheskih-celej-pf-gu-vshe-koncepciya-razvitiya-permskogo-filiala-gosudarstvennogo-universiteta.html
4-rol-pili-problemi-predotvrasheniya-globalnih-riskov-ugrozhayushih-sushestvovaniyu-chelovecheskoj-civilizacii.html
4-rukovodstvo-diplomnimi-rabotami-metodicheskie-ukazaniya-k-vipolneniyu-diplomnoj-raboti-dlya-studentov-dnevnoj-i.html
4-russkaya-muzikalnaya-klassika-xix-v-pichajkovskij-lekciya-religioznoe-obosnovanie-kulturi-4.html
  • portfolio.bystrickaya.ru/operacionnij-plan-ministerstva-ekonomiki-i-byudzhetnogo-planirovaniya-respubliki-kazahstan-na-2008-god-stranica-4.html
  • desk.bystrickaya.ru/pechat-shkoli-gorodskoj-konkurs-shkolnoj-ligi-kvn-g-minska-provoditsya-v-6-etapov-ietap.html
  • crib.bystrickaya.ru/igra-ee-funkcii-i-vidi.html
  • literature.bystrickaya.ru/byulleten-novih-postuplenij-za-2-kvartal-2010-goda.html
  • abstract.bystrickaya.ru/2-normi-rabochego-vremeni-normi-uchebnoj-nagruzki-i-poryadok-ee-raspredeleniya-v-dyussh.html
  • notebook.bystrickaya.ru/ispolzovanie-blagopriyatnih-chistih-fitosanitarnih-uslovij-dlya-virashivaniya-zdorovogo-semennogo-materiala.html
  • write.bystrickaya.ru/glava-2-rodovie-osobennosti-antisovetskogo-mishleniya-sergej-georgievich-kara-murza.html
  • thescience.bystrickaya.ru/issledovanie-urovnya-glyukozi-v-krovi.html
  • lesson.bystrickaya.ru/osobennosti-raboti-vospitatelya-v-detskom-sadu.html
  • urok.bystrickaya.ru/predki-karla-bryullova-bili-vihodcami-iz-severnoj-germanii-ego-praded-georg-bryullov-v-1773-g-pereehal-v-rossiyu-i-stal-stranica-7.html
  • pisat.bystrickaya.ru/svedeniya-ob-administrativnoj-praktike-upravleniya-v-otnoshenii-arbitrazhnih-upravlyayushih.html
  • reading.bystrickaya.ru/lekcij-po-vichislitelnoj-matematike-ucheb-pos-centr-dizajna-i-poligrafi.html
  • institut.bystrickaya.ru/taktika-dejstvij-federacii-nezavisimih-profsoyuzov-rsfsr-v-predstoyashij-period-stranica-2.html
  • student.bystrickaya.ru/1-obshaya-harakteristika-eksperimentalnih-dannih-n-a-zadorina-obrabotka-eksperimentalnih-dannih-na-evm.html
  • holiday.bystrickaya.ru/nazvanie-i-soderzhanie-razdelov-tem-stranica-19.html
  • paragraf.bystrickaya.ru/zimnij-turpoezd-v-gosti-k-dedu-morozu-v-velikij-ustyug-s-02-01-2011-po-05-01-2011.html
  • university.bystrickaya.ru/glava-18-politicheskaya-globalistika-777-moskva.html
  • crib.bystrickaya.ru/kegoc-a-direktorlar-keesn.html
  • testyi.bystrickaya.ru/84-kontrolnie-ispitaniya-gosudarstvennij-standart-rossijskoj-federacii-apparatura-raspredeleniya-i-upravleniya.html
  • shpargalka.bystrickaya.ru/volokonno-opticheskie-sistemi-peredachi-dannih.html
  • learn.bystrickaya.ru/folk-i-ist-kn-nauchnaya-rabota-velas-po-sleduyushim-20-napravleniyam.html
  • assessments.bystrickaya.ru/bolshie-dozi-glyukozo-insulin-kalievoj-smesi-ne-umenshayut-smertnost-bolnih-ostrim-infarktom-miokarda-s-podemami-segmenta-st-na-ekg-stranica-5.html
  • uchit.bystrickaya.ru/tematika-lekcionnih-zanyatij-12-chasov-uchebno-metodicheskij-kompleks-disciplini-bijsk-bpgu-imeni-v-m-shukshina.html
  • books.bystrickaya.ru/doklad-na-vii-mezhdunarodnoj-konferencii-pravo-i-internet.html
  • zadachi.bystrickaya.ru/u-maketa-igra-v-associacii-14-zritelnij-i-zvukovoj-ryad-23.html
  • tasks.bystrickaya.ru/1-centr-informatizacii-i-avtomatizacii-grgu-im-ya-kupali-2002-2005.html
  • abstract.bystrickaya.ru/336-osnovi-moderna-232b-tanec-dlya-malenkih-ot-2-do-6-let-metodika-i-postanovki.html
  • ucheba.bystrickaya.ru/premiya-arhiwood-za-luchshuyu-arhitekturu-iz-dereva-vruchaetsya-v-etom-godu-v-tretij-raz-generalnim-partnerom-proekta-po-tradicii-vistupaet-kompaniya-rossa-rake.html
  • tests.bystrickaya.ru/matematika-kalendarno-tematicheskoe-planirovanie-obrazovatelnaya-programma-rassmotrena-na-pedagogicheskom-sovete-ot-2011-goda.html
  • turn.bystrickaya.ru/polisinteticheskie-yaziki-slovoobrazovanie.html
  • tasks.bystrickaya.ru/34-trebovaniya-k-uchastnikam-podtverzhdenie-sootvetstviya-predyavlyaemim-trebovaniyam.html
  • doklad.bystrickaya.ru/vojni-svyashennie-stranici-naveki-v-pamyati-lyudskoj.html
  • upbringing.bystrickaya.ru/mamedyarov-s-ponomariov-rdortmund-2010-round-9-07242010-match-kitaj-rossiya.html
  • assessments.bystrickaya.ru/c-cvet-ahromaticheskij-s-yu-golovin-slovar-prakticheskogo-psihologa.html
  • ekzamen.bystrickaya.ru/rezultati-ege-po-obshestvoznaniyu.html
  • © bystrickaya.ru
    Мобильный рефератник - для мобильных людей.